
ReLTS: A Tool for Checking Generalized
Behavioural Relations over LTSs

Mihir Mehta 1 Shibashis Guha 2 S. Arun-Kumar 2

1 University of Texas at Austin
mihir@cs.utexas.edu

2Indian Institute of Technology Delhi
{shibashis,sak}@cse.iitd.ac.in

Abstract. We present ReLTS, a tool that implements a generalized
form of Stirling’s bisimulation game. Given two labelled transition sys-
tems (LTSs), ReLTS checks the existence of a family of relations pa-
rameterised by number of rounds and number of alternations. These
relations provide a quantitative measure of the similarity between two
LTSs which otherwise cannot be captured by simulation or bisimula-
tion relations. Simulation preorder, bisimulation, simulation equivalence
are special cases of this family. If the challenger has a winning strategy,
ReLTS also reports the number of alternations and rounds involved in the
best possible strategies for the challenger and generates distinguishing
formulae for these strategies.

1 Introduction

There are several software tools that implement bisimulation-checking on la-
belled transition systems (LTS). Prominent among these are Auto and Auto-
graph [10,2], Aldébaran [7], the Edinburgh concurrency workbench (several ver-
sions e.g. [4], [11]) and the Concurrency Workbench of the New Century [5].
Many of these tools implement algorithms for bisimulation-checking that are
derived from the Paige-Tarjan algorithm for partition-refinement. The more re-
cent version of the Edinburgh Concurrency Workbench [11] implements a game-
theoretic formulation similar to the bisimulation games described in Stirling [12].

A recent paper [3] describes a parameterised version of the game described
in [12], where the game is parameterised by the maximum number of rounds
(n) and the maximum number of alternations (k) allowed in a game. This the-
ory is further developed in [8] wherein an infinite hierarchy of timed games is
described over timed automata. Besides the simulation preorder, the simulation
equivalence and bisimilarity, the hierarchy allows for a much finer-grained con-
trol on the parameters of the game and therefore allows for many more preorders
and equivalences to be described.

ReLTS is a tool that implements this hierarchy of game-based relations. Re-
moving restrictions on the number of alternations and on the number of rounds
yields bisimulation game. Similarly removing the restrictions on the number of



2

rounds and disallowing alternations yields a game corresponding to the simula-
tion preorder.

These relations over LTSs can be extended to relations over timed automata[1],
by means of evaluating the relations over zone graphs of timed automata. Using
reltool, a tool for generation of zone graphs, it is possible to evaluate time
abstracted bisimulation [14] parameterised over n and k as well.

2 Game Characterization of Bisimilarity

The bisimulation game is played on labelled transition systems.

Definition 1. Let (Proc,Act, { α→ |α ∈ Act}) be a labelled transition system
(LTS) with Proc being the set of states in the LTS and Act being the set of
actions. A strong bisimulation game starting from the pair of states (s1, t1) ∈
Proc× Proc is a two-player game with a challenger and a defender. The game
is played in rounds and the configurations of the games are some pairs of states
(s, t) in Proc×Proc that are reachable from the initial configuration as described
below. The initial configuration is a designated pair of states (s1, t1). In the
beginning of the game, the initial configuration is the current configuration and
in each round the players change the current configuration (s1, t1) according to
the following rules.

1. The challenger chooses either s or t of the current configuration which we
refer to as the left side and the right side of the configuration respectively
and the challenger also chooses an action α ∈ Act.

2. The challenger performs an action s
α→ s′ or t

α→ t′ depending on whether it
chooses s or t in the current configuration. Here s′ and t′ belong to Proc.

3. The defender chooses the side not chosen by the challenger and replicates
the action, i.e. if the challenger chooses the left side, the defender performs
t
α→ t′ while if the challenger chooses the right side, the defender performs

s
α→ s′. The current configuration changes to (s′, t′) after the move of the

defender.
4. The game continues to the next round according to the rules described above

from the new current configuration (s′, t′).

In every round, the challenger can choose a side, an action and a transition. The
defender’s only choice is to choose an available transition with the same action.
A play of the strong bisimulation game is a maximal sequence of configurations
formed by the players starting from the initial configuration (s1, t1). A sequence
of configurations is maximal if it cannot be extended while following the rules
of the game. A play can be finite or infinite. The challenger loses a finite play
at the current configuration (s, t) iff s 6−→ and t 6−→. In any infinite play, the
challenger loses. This means that the defender is always able to respond to
the challenger’s move and the challenger cannot identify a difference between
the two states of any configuration reachable from the initial configuration. We
note that a bisimulation game can have many different plays depending on the



3

q2

q4 q5

q8 q9 q10

q12 q13

q

q1

q3

q6

q11
q7

a a

b b b

c c c c c

d d d

e

p12 p13

p8

p11

a a

b b b

c c c c c

d d d

ee

ap3

p6 p7 p9 p10

b b

c c c

d d

p

p2p1

p4 p5

p14 p15 p16 p17 p18

p19 p20 p21 p22 p23 q14

Fig. 1. An example of a strong bisimulation game with five rounds and four alterna-
tions

transitions chosen by the challenger and the defender. A given play is either
winning for the challenger or for the defender but not for both. The following
game characterization of bisimulation is due to Stirling [12] and Thomas [13].

Proposition 1. States s1 and t1 of an LTS are strongly bisimilar iff the de-
fender always has a move following the rules of the game corresponding to any
of the transitions chosen by the challenger in every configuration reached starting
from the configuration (s1, t1).

We note that if s1 and t1 belong to two separate LTSs this is equivalent to
considering them in the same LTS that can be constructed by adding an edge
between s1 and t1. This edge can be labelled with any arbitrary action α ∈ Act.
Figure 1 illustrates an example of a strong bisimulation game between two states
s1 and t1. The 4indicates the moves chosen by the challenger in various rounds.
We note that the play consists of five rounds and four alternations. As mentioned
earlier, an alternation is said to happen if the challenger switches side between
two successive rounds. The initial configuration is (p, q). In the beginning of
round 5, the configuration reached is (p11, q8) when the challenger makes the

move p11
d−→ p19 while the defender cannot replicate the d action from q8 and

thus loses. Hence p and q are not strongly bisimilar according to Proposition 1.
We note that the challenger needs a play with at least five rounds and four

alternations in order to win, i.e. to show that the states p and q in Figure 1
are not strongly bisimilar. Corresponding to a game in which a maximum of
n alternations and k rounds are allowed, we can define a relation R(n, k) such
that (p, q) ∈ R(n, k) iff the challenger cannot distinguish between p and q by
playing a game where a maximum of k rounds and n alternations are allowed.
The strong bisimulation game is thus R(∞,∞). Also it is easy to see that if
(p, q) ∈ R(n, k), then (p, q) ∈ R(n+ 1, k) and (p, q) ∈ R(n, k + 1).

3 Architecture of ReLTS

ReLTS is written in Ocaml and it uses the Ocamlgraph library [6] for repre-
senting LTS. It uses the dot format for specifying the input LTSs. A strategy of



4

Ocamlgraph

representation

LTS2

p q n kOcamlgraph

LTS1

representation

−−equivalence

switch

List of (n, k) pairs

switch

−−pairs

List of (n, k) pairs

List of (n, k, f) tuples

Challengr loses/wins (T/ F)

get_nk_pairs1get_distinguishing_formulae1

List of (n, k, f) tuples List of (n, k) pairs

switch

−−pairs

List of (n, k) pairsChallengr loses/wins (T/ F)

get_distinguishing_formulae2 get_nk_pairs2

Conversion
to string

Formula
minimizationList of (n, k, f) tuples output

output

outputChallengr loses/wins (T/ F)

List of (n, k) tuples

Input module

Ocamlgraph
Parser

Ocamlgraph

Representation
(two LTSs) (two LTSs)

Two dot files

No

No

No

No

No

Yes

Yes
Yes

Yes Yes

Output module

switch
−−relation
−−pairs or

switch
−−relation
−−pairs or

Formatted

Formatted

Formatted

Fig. 2. Components of ReLTS

a player of the game is a sequence of moves made by it. If the challenger has
several strategies to win, only the optimal strategies are reported. Strategy A
represented by the tuple (nA, kA, fA) is considered at least as good as strategy
B represented by the tuple (nB , kB , fB) iff (nA ≤ nB) and (kA ≤ kB). This no-
tion of goodness evidently forms a preorder, therefore multiple optimal strate-
gies may exist. The core functionality of the tool is provided by the function
get distinguishing formulae. When the challenger and the defender make
their first move from state p in lts1 and state q in lts2 respectively, the call
get distinguishing formulae lts1 lts2 p q n k yes table no table

returns a list of optimal winning strategies for the challenger in which it uses at
most n alternations and at most k rounds. It also returns the updated values
of yes table and no table which are the data structures used for memoisation.
no table stores pairs of states that have been shown to be unrelated. yes table
stores the pairs of states seen so far that do not belong to the no table. The



5

a
a

a
p

q

Fig. 3. A simple ex-
ample

get_distinguishing_formulae

yes_table, no_table

List of (n, k, f) tuples
Call for pairs of

states (p, q) in

lts1, lts2

tuples, yes_table, no_table

Recursively get (n, k, f)

for pairs of successor states

in lts1, lts2
optimal strategies

construction retaining only

Cartesian product

Fig. 4. Internals of get distinguishing formula

list is empty iff the challenger has no winning strategies. A negative value for n
denotes no restriction on the number of alternations and likewise for k.

Figure 2 shows the components and their interaction during an execution of
the tool. The command line interface provides a number of options for customis-
ing the output from get distinguishing formulae. The switch --equivalence

evaluates the relation for the case where once the game is played such that the
challenger chooses p in the first round and next the game is played such that the
challenger chooses q in the first round. The challenger wins if it has a winning
strategy by starting from either p or from q. The option --pairs displays the n
and the k corresponding to the optimal strategies, and the option --relation

further reduces the output to indicating whether or not the relation holds. In
both these cases, evaluation of distinguishing formulae is omitted when not re-
quested in the output.

3.1 Example

We refer to Figure 3. Starting from p in lts1, the challenger has a winning
strategy with 1 alternation and 2 rounds while starting from q, it wins with 2
alternations and 3 rounds. Thus get distinguishing formulae2 lts1 lts2 p

q (-1) (-1) in turn calls get distinguishing formulae lts1 lts2 p q n k

yes table no table that returns a list of strategies as part of the return value
such that a strategy A being (nA, kA, fA), with nA = 1 and kA = 2 as mentioned
above. The subsequent call to get distinguishing formulae lts2 lts1 q p

n k yes table no table returns a list of strategies as part of the return value
such that a strategy B being (nB , kB , fB), with nB = 2 and kB = 3. The two
lists of strategies are merged; and B is discarded in the process since it is clearly
worse than A. The distinguishing formula generated is 〈a〉[a]ff.

Evaluation of time abstracted relations requires the use of reltool. For the
user’s convenience, a wrapper shell script ta wrapper.sh is distributed with
ReLTS.

4 Algorithm

We describe below the algorithm implemented in ReLTS to check the relation
parameterised over n and k between two states p and q. Though partition re-
finement algorithms [9] are known for bisimulation relation, such algorithms are
not known to exist for the generalized relations involving restricting both the
number of rounds and the number of alternations and producing distinguishing
formula related to optimal strategies.



6

Number of states Acyclic LTS Cyclic LTS

63 0.041 0.1

127 0.459 0.5

255 5.1 8.2

511 79.3 123.4

Table 1. All durations in seconds

Consider the call
get distinguishing formulae lts1 lts2 p q n k yes table no table.
Consider a transition p

a−→ p′. We can obtain a strategy for this transition for
the following two cases:
1. 6 ∃qi such that q

a−→ qi (Base case). The strategy is simply (0, 1, 〈a〉tt).

2. ∀qi, such that q
a−→ qi, there exists a strategy (ni, ki, fi) (Induction case).

For the pair (p′, qi), the list of strategies Lp′,qi such that the challenger
starts from p′, is merged with the list of strategies Lqi,p′ , where the challenger
starts from qi, in the following way. merge(Lp′,qi , Lqi,p′) = Lp′,qi ∪ {(nA +
1, kA,¬fA) | (nA, kA, fA) ∈ Lqi,p′}. The non-optimal strategies are then removed
from the merged list to obtain a set of strategies Mi. The final strategies for
(p, q) such that the challenger starts from p is defined as the set of optimal

strategies in
∏
i

(nAi, kAi + 1, fAi), where (nAi, kAi, fAi) ∈ Mi. The product of

two strategies (nAi, kAi + 1, fAi) ∈ Mi and (nAj , kAj + 1, fAj) ∈ Mj is defined
as (max(nAi, nAj),max(kAi + 1, kAj + 1), fAi ∧ fAj). p′ satisfies both fAi

and
fAj

, whereas none of qi or qj satisfies both fAi
and fAj

. Hence we have the
distinguishing formula fAi

∧ fAj
.

As a convention, the distinguishing formula generated is satisfied by the state
in the LTS chosen by the challenger in the first round. Algorithm 1 given in the
appendix shows a pseudocode for the function get distinguishing formula.

5 Benchmarks

Table 1 has running time measurements of ReLTS on LTSs with increasing
numbers of states. The tests were run on a machine with CPU speed 2.5GHz
and 8 GB RAM. Acyclic LTSs were generated as binary trees with directed
edges pointing away from the root, while the cyclic LTSs had additionally a
back edge from one of the leaves to the root. All the edges were labelled with
the same action. The number of states chosen in our experiments corresponds to
the number of nodes in a full binary tree. In the experiments, the relations were
checked between two copies of the same LTS. The number of alternations was
restricted to zero. As an indication, the memory usage was 29.9 MB for cyclic
LTS with 511 states. The number of rounds was unrestricted in all experiments.



7

6 Availability and Possible Evolution

The tool can be downloaded from the project homepage, http://airbornemihir.
github.io/lts_reltool/.
For the generation of zone graphs, reltool is required, which can be obtained
from its homepage http://github.com/airbornemihir/bachelor-thesis.
The game playing strategy for timed relations provides a unifying approach to
decide several timed preorders, bisimulations and prebisimulations, which can
be explored in future work.[8].

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. Gérard Boudol, Valérie Roy, Robert de Simone, and Didier Vergamini. Process
calculi, from theory to practice: Verification tools. In Proceedings of the Inter-
national Workshop on Automatic Verification Methods for Finite State Systems,
pages 1–10, London, UK, 1990. Springer-Verlag.

3. X. Chen and Y. Deng. Game characterizations of process equivalences. In Pro-
ceedings of APLAS, pages 107–121, 2008.

4. Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency work-
bench: A semantics-based tool for the verification of concurrent systems. ACM
Trans. Program. Lang. Syst., 15:36–72, January 1993.

5. Rance Cleaveland and Steve Sims. The ncsu concurrency workbench. In Proceed-
ings of the 8th International Conference on Computer Aided Verification, pages
394–397, London, UK, 1996. Springer-Verlag.

6. S. Conchon, J. C. Filliâtre, and J. Signoles. Designing a generic graph library using
ml functors. In Trends in Functional Programming, pages 124–140, 2007.

7. Jean-Claude Fernandez and Laurent Mournier. A tool set for deciding behavioral
equivalences. In Proceedings of the 2Nd International Conference on Concurrency
Theory, CONCUR ’91, pages 23–42, London, UK, 1991. Springer-Verlag.

8. S. Guha, S. N. Krishna, C. Narayan, and S. Arun-Kumar. A unifying approach
to decide relations for timed automata and their game characterization. In EX-
PRESS/SOS, volume 120 of EPTCS, pages 47–62, 2013.

9. R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973–989, 1987.

10. Valérie Roy and Robert de Simone. Auto/autograph. In Proceedings of the 2Nd
International Workshop on Computer Aided Verification, CAV ’90, pages 65–75,
London, UK, 1991. Springer-Verlag.

11. Perdita Stevens. A practical introduction to games, infinity and the edinburgh
concurrency workbench. In Proceedings of FIW, pages 35–36. IOS Press, 2005.

12. C. Stirling. Local model checking games. In Proceedings of CONCUR, pages 1–11,
1995.

13. Wolfgang Thomas. On the ehrenfeucht-fräıssé game in theoretical computer sci-
ence. In TAPSOFT, pages 559–568, 1993.

14. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisim-
ulations. Formal Methods in System Design, 18:25–68, 2001.

http://airbornemihir.github.io/lts_reltool/
http://airbornemihir.github.io/lts_reltool/
http://github.com/airbornemihir/bachelor-thesis


Algorithm 1 The algorithm in get distinguishing formula.
Input: lts1 and lts2: LTSs, p and q: their respective initial states, n and k:
maximum numbers of alternations and rounds allowed in the game, respectively,
yes table and no table: dynamic programming data structures
Output: A list of winning strategies if the two states are not related

1: ls′ := []
2: for all (a, p′) such that p

a−→ p′ do
3: for all q′ such that q

a−→ q′ do
4: if (p′, q′, n, k − 1) /∈ yes table and k > 0 then
5: (f ′, n′, k′) = get distinguishing formula(lts1, lts2, p′, q′, n, k −

1, yes table, no table) . n’, k’: number of alternations and number of rounds in the play that the challenger actually needed to win

the game from p′, q′

6: if f ′ = null then . q′ is a match for p′ .

7: break
8: end if
9: if (f ′, n′, k′) is a better strategy than some existing strategy for (p′, q′)

then
10: ls′ := ls′ :: (f ′, n′, k′, p′, q′)
11: Add the entry (f ′, n′, k′, p′, q′) to no table, removing all other strate-

gies for (p′, q′) which are worse than this.
12: end if
13: end if
14: end for
15: end for
16: for all (a, q′) such that q

a−→ q′ do
17: for all p′ such that p

a−→ p′ do
18: if (p′, q′, n− 1, k − 1) /∈ yes table and n > 0 and k > 0 then
19: (f ′, n′, k′) = get distinguishing formula(lts2, lts1, q′, p′, n − 1, k −

1, yes table, no table) . n′ , k′ : number of alternations and number of rounds in the play that the challenger actually needed to

win the game from p′, q′

20: if f ′ = null then . p′ is a match for q′ .

21: break
22: end if
23: if (f ′, n′, k′) is a better strategy than some existing strategy for (p′, q′)

then
24: ls′ := ls′ :: (f ′, n′, k′, p′, q′)
25: Add the entry (f ′, n′, k′, p′, q′) to no table, removing all other strate-

gies for (p′, q′) which are worse than this.
26: end if
27: end if
28: end for
29: end for
30: if f ′ = null then
31: return (null, -1, -1) . p and q are strongly bisimilar

32: add (p, q, n, k) to yes table
33: else
34: Construct ls from the best set of strategies in ls′

35: return ls
36: end if


	ReLTS: A Tool for Checking Generalized Behavioural Relations over LTSs
	Introduction
	Game Characterization of Bisimilarity
	Architecture of ReLTS
	Example

	Algorithm
	Benchmarks
	Availability and Possible Evolution


